rectangle waveguide
calculate the wave parameters when the frequency is above the cutoff.
Parameters
width
a
\(m\)
height
b
\(m\)
frequency
f
\(Hz\)
Mode
mode
\(\)
Power
P
\(W\)
Break Electric Field
`E_b`
\(V/m\)
Phase
`phi`
\(^\circ\)
Output
wavelength `lambda`
`lambda f=c`
angular frequency `omega`
`omega=2 pi f`
Wave number k
`k=omega sqrt(epsilon mu)=omega/c`
`k_x`
`k_x=(m pi)/a`
`k_y`
`k_y=(n pi)/b`
cutoff wavenumber `k_c`
`k_c^2=k_x^2+k_y^2`
cutoff frequency `f_c`
`k_c=omega/c=(2 pi f)/c`
`k_z`
`k^2=k_x^2+k_y^2+k_z^2`
horizontal angle `theta`
`tan(theta)=k_x/k_z`
vertical angle `phi`
`tan phi=k_y/k_z`
cutoff angle `theta_c`
`sin theta_c=k_c/k`
waveguide wavelength `lambda_g`
`lambda_g=(2 pi)/k_z`
Wave Impendance `Z`
`Z=E_x/H_y=(omega mu)/k_z`
`H_0`
`P=(Z k_z^2 a b H_0^2)/(8|4 k_c^2)`
`E_{y0}`
`H_0 (Z k_z m pi)/(a k_c^2)`
`E_0`
`E_0=H_0 (omega mu)/k_c^2`
`E_{x0}`
`E_{x0}/E_(y0)=n/m a/b`
Power Capacity
`H_{zmax}`
`H_{zmax}=E_b/sqrt(1+(n/m a/b)^2) (a k_c^2)/(Z k_z m pi)`
Break Power `P_b`
`P_b=(Z k_z^2 a b H_{zmax}^2)/(8|4 k_c^2)`
Phase `A_0 cos(omega t-k_z z+phi)`
`phi(E_x)`
`phi+90^0`
`phi E_y`
`phi-90^0`
express `E_x(x,y)`
`cos((m pi)/a x)sin((n pi)/b y)`
`E_y(x,y)`
`sin((m pi)/a x)cos((n pi)/b y)`