Dielectric permittivity tensor with 2 ions
Calculate the dielectric permittivity tensor
Induced magnetic field
Electron density
wave frequency
Ion 1 Mass
Ion 1 charge
Ion 2 Mass
Ion 2 charge
Ion 2 ratio
Angle btw n and B
Electron Temperature
Plot frequency from
Plot frequency To
Ion 1 density `n_(i1)`
`n_e=n_(i1) Z_1+n_(i2) Z_2`
Ion 2 density `n_(i2)`
`n_(i2)=r n_(i1)`
Electro plasma frequency
\(f_{pe}=\frac{1}{2\pi}\sqrt{\frac{n_e e^2}{\epsilon_0 m}}\)
Electro cyclone frequency
\(f_{ce}=\frac{e Bt}{m}\frac{1}{2\pi}\)
Ion plasma frequency
\(f_{pi}=\frac{1}{2\pi}\sqrt{\frac{n_i (Z e)^2}{\epsilon_0 m_i}}\)
Ion 1 cyclone frequency `f_(ci1)`
\(f_{ci}=-\frac{Z e B0}{m_i}\frac{1}{2\pi}\)
Ion 2 plasma frequency
`f_(p i2)=1/(2pi) sqrt((n_(i2)(Z_2e)^2)/(epsilon_0 m_(i2))`
Ion 2 cyclone frequency `f_(ci2)`
`f_(ci2)=-(Z_2 e B)/(2 pi m_(i2))`
Right cutoff
\(\omega_R=\sqrt{\omega_{ce}^2/4+\omega_{pe}^2+\omega_{ce}\omega_{ci}}+\omega_{ce}/2 \)
Left Cutoff
\(\omega_L=\sqrt{\omega_{ce}^2/4+\omega_{pe}^2+\omega_{ce}\omega_{ci}}-\omega_{ce}/2 \)
\(K_{\bot}\)
`K_(bot)=1-Sigma(omega_(pk)^2/(omega^2-omega_(ck)^2))`
\(K_{\times}\)
`K_x=-Sigma(omega_(pk)^2/(omega^2-omega_(ck)^2) omega_(ck)/omega)`
\(K_{\parallel}\)
`K_(||)=1-Sigma(omega_(pk)^2/omega^2)`
\(\gamma\)
\(\gamma=\frac{\mu_0(n_im_i+n_em_e)c^2}{B_0^2} \,\,\,\, \omega_{pi}^2=\gamma\omega_{ci}^2 \,\,\,\, v_A^2=\frac{c^2}{\gamma}\)
Norm B square
\(\frac{\omega_{ce}^2}{\omega^2}\)
Norm density
\(\frac{\omega_{pe}^2+\omega_{ce}^2}{\omega^2}\)
R
\(R=K_{\bot}+K_{\times}\)
L
\(L=K_{\bot}-K_{\times}\)
electro ratio
\(\frac{\omega_{pe}^2}{\omega^2-\omega_{ce}^2}\)
ion 1 ratio
\(\frac{\omega_{pi}^2}{\omega^2-\omega_{ci}^2}\)
ion 2 ratio
\(\frac{\omega_{pi2}^2}{\omega^2-\omega_{ci2}^2}\)
Alfven velocity
\(V_A=\frac{B_0}{\sqrt{\mu_0 \rho}}\)
mass density
\(\rho=n_i m_i\)
upper hybrid frequency
\( \omega_{UH}=\sqrt{\omega_{pe}^2+\omega_{ce}^2}\)
lower hybrid frequency
\(\omega_{LH}=\sqrt{\frac{\omega_{ce}^2\omega_{ci}^2+\omega_{pi}^2\omega_{ce}^2}{\omega_{pe}^2+\omega_{ce}^2}}\)
permittivity
\( \mathbf K=\begin{bmatrix} K_{\bot} & -i K_{\times} & 0 \\ i K_{\times} & K_{\bot} & 0 \\ 0 & 0 & k_{\parallel} \end{bmatrix}\)
eigenmode equation
\(\begin{bmatrix} S-n^2\cos^2\theta & -i D & n^2\cos\theta\sin\theta \\ i D & S-n^2 & 0 \\ n^2\sin\theta\cos\theta & 0 & P-n^2\sin^2\theta \end{bmatrix}\begin{bmatrix} E_x \\ E_y \\ E_z \end{bmatrix}=0 \)
A
\(K_{\bot}\sin^2 \theta+K_{\parallel} \cos^2 \theta \)
B
\(RL\sin^2\theta+K_{\parallel}K_{\bot}(1+\cos^2\theta)\)
C
\( K_{\parallel}RL\)
n1 wave
\(An^4-Bn^2+C=0\,\,\,\, n_2=\sqrt{\frac{B+\sqrt{B^2-4AC}}{2A}}\)
n1 polarization
\(\frac{i E_x}{E_y}=\frac{n^2-S}{D} \,\,\,\, left: -1\)
n2 wave
\(n_2=\sqrt{\frac{B-\sqrt{B^2-4AC}}{2A}}\)
n2 polarization
\(\frac{i E_x}{E_y}=\frac{n^2-S}{D}\,\,\,\, right: 1\)
\(\epsilon_0 \omega\)
\(-\epsilon_0 \omega\)
conductivity
\(\mathbf K=\mathbf I+\frac{i \mathbf{\sigma}}{\epsilon_0 \omega} \)
thermal velocity
\(\frac{1}{2}mv_{th}^2=KT\)
reciprocal of n
\(\lambda=\frac{\lambda_0}{n}\,\,\,\, v_{\phi}=\frac{c}{n}\)