poloidal magnetic flux

Green function method


Parameters

source current
I0I_{0} AA
source radius
r0r_{0} mmmm
source height
z0z_{0} mmmm
field point radius
r mmmm
field point height
z mmmm

Output

max distance parameter kmax2k_{\max}^{2}

kmax2=4rr0(r+r0)2+(zz0)2k_{\max}^{2} = \frac{4 r r_{0}}{\left( r + r_{0} \right )^{2} + \left( z - z_{0} \right )^{2}}

min distance parameter kmin2k_{\min}^{2}

kmin2=4rr0(rr0)2+(zz0)2k_{\min}^{2} = \frac{4 r r_{0}}{\left( r - r_{0} \right )^{2} + \left( z - z_{0} \right )^{2}}

Green function G

G(r,z;r0,z0)=μ0πkrr0[(10.5k2)K(k)E(k)]G \left( r , z ; r_{0} , z_{0} \right ) = \frac{\mu_{0}}{\pi k} \sqrt{r r_{0}} \left[ \left( 1 - 0.5 k^{2} \right ) K \left( k \right ) - E \left( k \right ) \right ]

poloidal magnetic flux Ψ\Psi

Ψ=GI0\Psi = G I_{0}

max distance dmaxd_{\max}

dmax2=(r1+r0)2+(z1z0)2d_{\max}^{2} = \left( r_{1} + r_{0} \right )^{2} + \left( z_{1} - z_{0} \right )^{2}

min distance dmind_{\min}

dmin2=(r1r0)2+(z1z0)2d_{\min}^{2} = \left( r_{1} - r_{0} \right )^{2} + \left( z_{1} - z_{0} \right )^{2}

Green function  G2G_{2}

G2=μ02[dminE(kmin2)dmaxE(kmax2)+(kmin+dmin)K(kmin2)+(dmaxkmax)K(kmax2)]G_{2} = \frac{\mu_{0}}{2} \left[ - d_{\min} E \left( - k_{\min}^{2} \right ) - d_{\max} E \left( k_{\max}^{2} \right ) + \left( k_{\min} + d_{\min} \right ) K \left( - k_{\min}^{2} \right ) + \left( d_{\max} - k_{\max} \right ) K \left( k_{\max}^{2} \right ) \right ]