Gaussian beam

The fundamental Gaussian beam

`E(r,z)=E_0 omega_0/{omega(z)} exp(-r^2/{omega(z)^2})exp(-ikz-ik r^2/{2 R(z)}+i k zeta(z))`


Parameters

wave length
`lambda` \(m\)
beam waist
\(w_0\) \(m\)
amplitude
\(E_0\) \(V/m\)
z-axis
z \(m\)
r-axis
r \(m\)

Output

frequency f

`c=lambda f`

wave number k

`k={2pi}/lambda`

waist to wave length ratio 

\(\frac{\omega}{\lambda}\)

Rayleigh range \(z_R\)

`z_R=1/2 omega_0^2 k`

beam width `omega(z)`

`omega(z)=omega_0 sqrt(1+(z/z_R)^2)`

wavefront curvature R(z)

`R(z)=z[1+(z_R/z)^2]`

Gouy phase `phi(z)`

`phi(z)=arctan(z/z_R)`

Beam divergency `theta`

`theta=lim_{z rarr oo}{omega(z)}/z=arctan(2/{omega_0 k})`

Max Intensity  `I_0`

`I_0=|E_0|^2/{2 eta}`

Total power `P_0`

`P_0=1/2 I_0 pi omega_0^2`

Itensity `I(r,z)`

`I(r,z)=I_0(omega_0/{omega(z)})^2 exp({-2r^2}/{omega(z)^2})`

power ratio p(r,z)

`p(r,z)=1-exp({-2r^2}/{omega(z)^2})`

Beam quality BPP

`BPP=theta*omega_0`

 `|E(r,z)|`

`E_0 omega_0/{omega(z)} exp(-r^2/{omega(z)^2})`

 `Arg(E)`

`k z+k r^2/(2R(z))-phi(z)`

Arg 

Arg in degree 

Electric field E(r,z)

`E(r,z)=E_0 omega_0/{omega(z)} exp(-r^2/{omega(z)^2})exp(-ikz-ik r^2/{2 R(z)}+i zeta(z))`

replace string 


complex form

beam parameter `q(z)`

`q(z)=z+iz_R`

reciprocal of q(z)  `1/(q(z))`

`1/q(z)=1/(R(z))-i lambda/(n pi omega^2(z))`

Electric Field `E(r,z)`

`E(r,z)=1/(q(z))exp(-jk r^2/(2q(z)))`