Dielectric permittivity tensor
Calculate the dielectric permittivity tensor
Induced magnetic field
Electron density
Ion mass
wave frequency
Ion charge
Angle btw n and B
Parallel Reflex
Electron Temperature
Plot frequency from
Plot frequency To
Ion density
\( n_i Z=n_e\)
Electro plasma frequency
\(f_{pe}=\frac{1}{2\pi}\sqrt{\frac{n_e e^2}{\epsilon_0 m}}\)
Electro cyclone frequency
\(f_{ce}=-\frac{e Bt}{m}\frac{1}{2\pi}\)
Ion plasma frequency
\(f_{pi}=\frac{1}{2\pi}\sqrt{\frac{n_i (Z e)^2}{\epsilon_0 m_i}}\)
Ion cyclone frequency
\(f_{ci}=\frac{Z e B0}{m_i}\frac{1}{2\pi}\)
Right cutoff
\(\omega_R=\sqrt{\omega_{ce}^2/4+\omega_{pe}^2+\omega_{ce}\omega_{ci}}+\omega_{ce}/2 \)
Left Cutoff
\(\omega_L=\sqrt{\omega_{ce}^2/4+\omega_{pe}^2+\omega_{ce}\omega_{ci}}-\omega_{ce}/2 \)
\(K_{\bot}\)
\(K_{\bot}=S=1- \frac{\omega_{pi}^2}{\omega^2-\omega_{ci}^2}- \frac{\omega_{pe}^2}{\omega^2-\omega_{ce}^2} \)
\(K_{\times}\)
\(K_{\times}=D=-\frac{\omega_{pi}^2}{\omega^2-\omega_{ci}^2}\frac{\omega_{ci}}{\omega}-\frac{\omega_{pe}^2}{\omega^2-\omega_{ce}^2}\frac{\omega_{ce}}{\omega}\)
\(K_{\parallel}\)
\(K_{\parallel}=P=1- \frac{\omega_{pi}^2}{\omega^2}- \frac{\omega_{pe}^2}{\omega^2}\)
\(\gamma\)
\(\gamma=\frac{\mu_0(n_im_i+n_em_e)c^2}{B_0^2} \,\,\,\, \omega_{pi}^2=\gamma\omega_{ci}^2 \,\,\,\, v_A^2=\frac{c^2}{\gamma}\)
Norm B square
\(\frac{\omega_{ce}^2}{\omega^2}\)
Norm density
\(\frac{\omega_{pe}^2+\omega_{ce}^2}{\omega^2}\)
R
\(R=K_{\bot}+K_{\times}\)
L
\(L=K_{\bot}-K_{\times}\)
electro ratio
\(\frac{\omega_{pe}^2}{\omega^2-\omega_{ce}^2}\)
ion ratio
\(\frac{\omega_{pi}^2}{\omega^2-\omega_{ci}^2}\)
Alfven velocity
\(V_A=\frac{B_0}{\sqrt{\mu_0 \rho}}\)
mass density
\(\rho=n_i m_i\)
upper hybrid frequency
\( \omega_{UH}=\sqrt{\omega_{pe}^2+\omega_{ce}^2}\)
lower hybrid frequency
\(\omega_{LH}=\sqrt{\frac{\omega_{ce}^2\omega_{ci}^2+\omega_{pi}^2\omega_{ce}^2}{\omega_{pe}^2+\omega_{ce}^2}}\)
permittivity
\(\mathbf K=\begin{bmatrix}K_{\bot}&-iK_{\times}&0\\iK_{\times}&K_{\bot}&0\\0&0&k_{\parallel}\end{bmatrix}\)
A
\(K_{\bot}\sin^2 \theta+K_{\parallel} \cos^2 \theta \)
B
\(RL\sin^2\theta+K_{\parallel}K_{\bot}(1+\cos^2\theta)\)
C
\( K_{\parallel}RL\)
n1 wave
\(An^4-Bn^2+C=0\,\,\,\, n_2=\sqrt{\frac{B+\sqrt{B^2-4AC}}{2A}}\)
n1 polarization
\(\frac{i E_x}{E_y}=\frac{n^2-S}{D} \,\,\,\, left: -1\)
n2 wave
\(n_2=\sqrt{\frac{B-\sqrt{B^2-4AC}}{2A}}\)
n2 polarization
\(\frac{i E_x}{E_y}=\frac{n^2-S}{D}\,\,\,\, right: 1\)
\(\epsilon_0 \omega\)
\(-\epsilon_0 \omega\)
conductivity
\(\mathbf K=\mathbf I+\frac{i \mathbf{\sigma}}{\epsilon_0 \omega} \)
thermal velocity
\(\frac{1}{2}mv_{th}^2=KT\)
reciprocal of n
\(\lambda=\frac{\lambda_0}{n}\,\,\,\, v_{\phi}=\frac{c}{n}\)
A
S
B
\(B=(S^2-D^2)+PS-(S+P)N_\parallel^2\)
C
\(C=P[(S-N_\parallel^2)^2-D^2]\)
`n_\bot^2`
`An_\bot^4-Bn_\bot^2+C=0`
`n_\bot^2`
-
Slow approximation
\(-\frac{P}{S}(n_\parallel^2-S)\)
Fast approximation
\(\frac{(R-n_\parallel^2)(L-n_\parallel^2)}{(S-n_\parallel^2)}\)